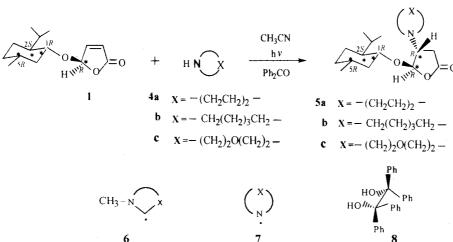
Asymmetric Photocatalyzed Addition of Cyclic Amines to the Chiral 5-(I)-Menthyloxy-2(5H)-furanone

Zhao Yang WANG¹, Tian Ying JIAN, Qing Hua CHEN*

Department of Chemistry, Beijing Normal University, Beijing 100875

Abstract: The benzophenone-initiated photoaddition of N-methyl amines 2 to the chiral synthon 1 proceeds in a regiospecific and highly stereocontrolled fashion to give the C-C photoadducts containing a newly stereogenic center 3a-3c. The enantiomerically pure N-C photoadducts, amino butenolides 5a-5c have been obtained from the enantioselective photoaddition of secondary cyclic amines 4 with the chiral synthon 1 under the same conditions.

Keywords: Asymmetric photocatalysed conjugate addition, enantiomerically pure C-C photoadducts. secondary cyclic amine, enantiomerically pure N-C photoadducts.


In recent years, considerable attention has been focused on the synthesis and properties of chiral butenolides because of their multifunctional nature and versatility on enantioselective transformation reactions^{1,2}. Despite extensive studies of this research work on asymmetric reactions but little effort has been devoted towards photochemical synthesis of some chiral γ-substituted 2-(5H)-furanones³. Among the previous work, the tertiary amines used in the photocatalysed conjugate additions to 5-substituted 2(5H)furanones were the first examples^{3d}, and the secondary cyclic amines have been not used yet in the photocatalysed additions. For this reason, it spurred us to study on the asymmetric photoadditions of N-methyl cyclic amines 2 and secondary cyclic amines 4 to 5-(1)-menthyloxy-2(5H)-furanone 1. As an extension of our research program on the synthesis and asymmetric reaction of chiral γ-butenolides^{1b}, we have now investigated photocatalyzed conjugate additions of cyclic amines and alcohols to chiral 5-alkoxy-2(5H)-furanones. In this paper, we would like to report the regiospecific and stereoselective additions of various N-methyl cyclic amines 2 to 5-(1)-menthyloxy-2(5H)-furanone 1 under irradiation with a 450 W medium pressure lamp (Pyrex, 350nm) in acetonitrile in the presence of benzophenone as a photocatalyzer to afford the photoadducts 3a-3c in 24-50% yields with d.e.≥98% (Scheme 1), and the photocatalyzed conjugate additions of various secondary cyclic amines 4a-4c to chiral butenolide 1

under the same conditions to give N-C adducts 5a-5c in 34-58% yields with d.e.≥98% (Scheme 2) which can be transformed to several chiral amino alcohols or amino esters.

Scheme 1

The mechanism of this photocatalysed reaction would appear to be analogous to that proposed by Fraser-Reid⁴, and involves excitation of benzophennone to the triplet (n, π^*) state with subsequent abstraction of a hydrogen atom from the various cyclic amines and Michael addition of the resultant radical 6 and 7 to the chiral synthon 1. The photolysis time was 1-4 h, upon which 1 had been consumed as monitored by TLC. Most of the benzophenone could be recovered unchanged, but variable amounts of benzopinocol 8 were also obtained, together with some unexpected compounds.

The structures of all photo-products were identified on the basis of satisfactory elemental analytical data and spectroscopic data ($[\alpha]20589$, IR, 1H NMR, ¹³C NMR and MS)⁶.

As an extension of the above work, other N-methyl cyclic amines *e.g.* nicotine and N-trimethylsilyl cyclic amines, alcohols, aldehydes, acetals can be used in the asymmetric photocatalyzed conjugate additions to 5-(l)-menthyloxy-2(5H)-furanone l to concisely synthesize more new optically active compounds, which are currently in progress.

Acknowledgment

The project (No.29672004) is supported by the National Natural Science Foundation of China

References and notes

- 1. a) H. Huang, Q. Chen, Tetrahedron: Asymmetry, 1998, 9, 4103.
 - b) Q. Chen, C. Zou, Youji Huaxue (Organic Chemistry, in Chinese), 1994, 14, 1.
 - c) Q. Chen, B. Huang, Chinese Science Bulletin (in Chinese), 1994, 39, 2154.
 - d) Q. Chen, Z. eng, Acta Chimica Sinica (in Chinese), 1993, 51, 622.
 - e) Q. Chen, Z. Geng, B. Huang, Tetrahedron: Asymmetry, 1995, 6, 401.
 - f) J. Cui, Bao. Du. Q. Chen, Science in China (series B), 1998, 41, 65.
 - g) Y. Wang, Q. Chen, Science in China (series B, in Chinese), 1998, 28, 531.
- 2. a) A. Van Oeveren, J. F. G. A. Jansen, B. L. Feringa, J. Org. Chem. 1994, 59, 5999.
 - b) A. Pelter, R. S. Ward, D. M. Jones, P. Maddocks, Tetrahedron: Asymmetry, 1992, 3, 239.
 - c) B. L. Feringa, B. de Lange, C. Jong, J. Org. Chem., 1989, 54, 2471.
 - d) B. L. Feringa, J. C. de. Jons, Bull. Soc. Chim. Belg., 1992, 101, 627.
 - e) J. C. de. Jons, F. V. Bohuis, B. L Feringa, Tetrahedron: Asymmetry, 1991, 2, 1247.
- 3. a) J. Mann, A. Weymouth-Wilson, Carbohydr. Res. 1991, 216, 511.
 - b) J. Mann, A. Weymouth-Wilson, Synlett 1992, 67.
 - c) J. Mann, A. Weymouth-Wilson, J. Chem. Soc, Perkin Trans. 1, 1994, 3143.
 - d) E. Santiago de Alvarenga, J. Mann, J. Chem. Soc, Perkin Trans. 1, 1993, 2141
- 4. Z. Benko, B. Fraser-reid, J. Org. Chem., 1988, 53, 2066.
- 5. **3a**. 1. 22g, (24%), m. p. 110~112°C; $[\alpha]^{20}_{589}$ =-104. 5(CHCl₃); IR (KBr): ν =2960. 2925. 2800, 1782. 1170. 962cm⁻¹; ¹H NMR (300MHz, CDCl₃)δ: 0. 70-1. 60 (16H, m, menthyl's H), 1. 60-2. 00 (5H, m, H₁₇, H₁₈, H_{3b}), 2. 10 (2H, m, H₇), 2. 25 (1H, m, H₁₆), 2. 31 (3H, s, H₂₀), 2. 55 (2H, m, H₁₉), 2.82 (1H, dd, J=9.9 Hz, H₄), 3.08 (1H, m, H_{1a}), 3.49 (1H, ddd, J=7.2, 7.2, 3.6 Hz, H₆), 5.60 (1H, s, H₅); ¹³C NMR (75MHz, CDCl₃)δ: 15.6, 20.9, 22.2, 23.0, 25.4, 27.0, 31.2, 31.3, 34.3, 39.9, 40.8, 42.7, 47.7, 57.1, 66.5, 77.1, 102.3, 176.4; MS(m/z): 323(M⁺,2), 184(M⁺-menthyl, 100), 84(C₅H₁₀N⁺, 100); Anal. Cacl. for C₁₉H₃₃NO₃: C 70.55, H 10.28. N 4.33; Found: C 70.70, H 10.43, N 4.09.
 - **5c.** 2.58g (50%), m.p. $116\sim117^{\circ}\text{C}$; $[\alpha]^{20}_{589}=-166.9(\text{CHCl}_3)$; IR (KBr): v=2960, 2923, 2857, 1781, 1122, 942cm⁻¹; ¹H NMR (300MHz, CDCl₃) δ : 0.77 (3H, d, J=6.9 Hz, H₁₅), 0.87 (3H, d, J=6.6 Hz, H₁₄), 0.94 (3H, d, J=6.6 Hz, H₁₂), 1.05 (3H, m, H₁₁, H₉), 1.22 (1H, m, H₈), 1.39 (1H,

m. H_{13}). 1.64 (2H, m, H_{10}), 2.05 (2H, m, H_7), 2.53 (5H, m, H_{17} , H_{21} , H_{3b}). 2.77 (1H, dd. J=18.8 Hz. H_4), 3.13 (1H, m, H_{3a}), 3.55 (1H, ddd, J=10.2, 10.2, 4.2 Hz. H_6), 5.63 (1H, s, H_5): ¹³C NMR (75MHz, CDCl₃) δ : 15.6, 20.8, 22.2, 23.0, 25.4, 31.3, 34.2, 39.5, 47.7, 50.2, 66.3, 77.1, 101.4, 174.3; MS(m/z): 325(M⁺,15), 113(C₆H₁₁NO⁺,100); Anal. Cacl. for C₁₈H₃₁NO₄: C 66.43. H 9.60, N 4.31: Found: C 66.77, H 9.85, N 4.48.

Received 22 February 1999